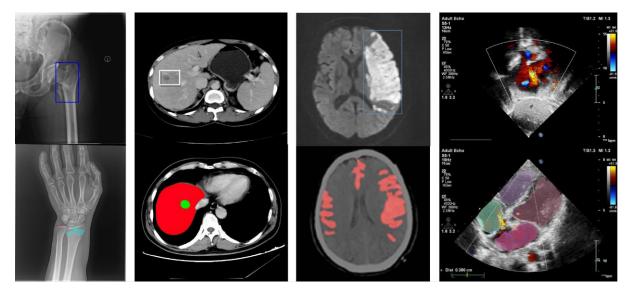
SOUTHERN MAINE

Making AI Models Interpretable and Explainable for Medical Image Analysis

Ahmad P. Tafti, PhD Assistant Professor of Computer Science Director, HexAl Research Laboratory University of Southern Maine

Outline


- Recent Advances in AI-Powered Medical Image Analysis
- Two Main Message in AI-Powered Medical Image Analysis
- Explainability in Computer Vision
- Making AI Models Interpretable and Explainable for Medical Image Analysis

AI-Powered Medical Image Analysis; Recent Advances

 Computer Vision, and particularly Deep Learning Computer Vision has already demonstrated successful applications in a variety of medical image analysis problems, including image registration, image segmentation, anomaly detection, object localization, and classification.

Health Data Science

Journal Overview 🗸 🗸	For Authors	For Reviewers	For Editors	Artic			
Health Data Science / 2021 / A	rticle						
On this page		Review Article Open Access Volume 2021 Article ID 8786793 https://doi.org/10.34133/2021/8786793					
Abstract		Show citation					
Introduction		Advances in De	eep Learning-Ba	ased			
Conclusion		Medical Image Analysis					
Conflicts of Interest		weutal illaye	Allalysis				
Authors' Contributions		Xiaoqing Liu, ¹ Kunlun Gao, ¹ Bo Liu <mark>©</mark> , ¹ Chengwei Pan <mark>©</mark> , ¹ Kongming Liang, ¹ Lifeng Yan <mark>©</mark> , ¹ Jiecha					
Acknowledgments		Ma, ¹ Fujin He, ¹ Shu Zhang, ¹ Siyuan Pan $^{\odot}$, ² and Yizhou Yu $^{\frown}$ ^{1,3}					

Citation: Liu, X., Gao, K., Liu, B., Pan, C., Liang, K., Yan, L., Ma, J., He, F., Zhang, S., Pan, S. and Yu, Y., 2021. Advances in deep learning-based medical image analysis. Health Data Science, 2021.

Overall, according to the best available evidence, deep learning models performed well in medical image analysis.

AI-Powered Medical Image Analysis; Recent Advances

MEDICAL PHYSICS

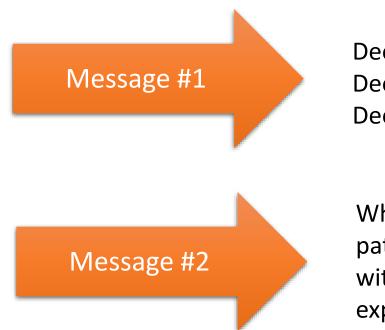
The International Journal of Medical Physics Research and Practice

Research Article

Comparing the performance of a deep convolutional neural network with orthopedic surgeons on the identification of total hip prosthesis design from plain radiographs

Alireza Borjali, Antonia F. Chen, Hany S. Bedair, Christopher M. Melnic, Orhun K. Muratoglu, Mohammad A. Morid, Kartik M. Varadarajan 🔀

The CNN achieved the same or higher performance than at least one of the surgeons in identifying eight of nine THR implant designs and underperformed all of the surgeons in identifying one THR implant design (Anthology)


AI-Powered Medical Image Analysis; Recent Advances

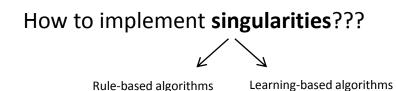
MDPI	Journals	s <u>Topics</u>	Information	Author Services	Initiatives	About	Sign In
Search for Articles:	Title / Keyword		/ Affiliation	Journal of Imaging (J 🔻		All Article Types	▼ Sea
Journals / J. Imaging / Volume	6 / Issue 6 / 10.3390/jima	ging6060052					
Journal of Imaging		Open Access R	eview				
Submit to this Journal		Explaina	able Deep	Learning N	lodels i	n Medical	Image
Review for this Journal		Analysis	5				
Edit a Special Issue		by <mark>용</mark> Amitojdeep	Singh ^{1,2,*} ⊠ ⁽ 2, <mark>8</mark>	Sourya Sengupta ^{1,2} ⊠ a	ind 🔗 Vasudeva	an Lakshminarayanan '	1,2 🖂 💿
Article Menu		Waterloo, ON N ² Department of S	2L 3G1, Canada	mology Laboratory, Schoo ineering, University of Wat puld be addressed.			rsity of Waterloo,

Deep learning methods have been very effective for a variety of medical diagnostic tasks and have even outperformed human experts on some of those. However, the blackbox nature of the algorithms has restricted their clinical use.

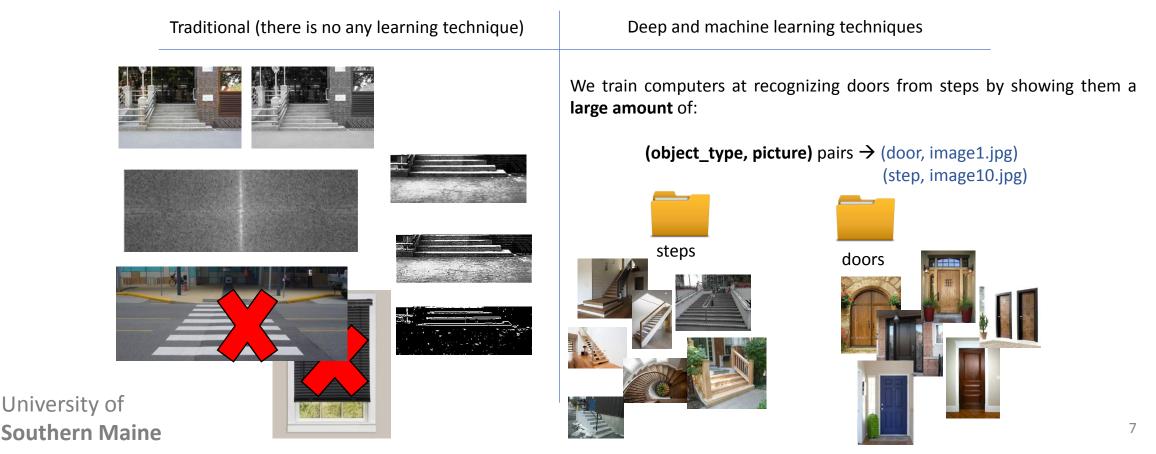
AI-Powered Medical Image Analysis; Two Main Messages

It is AND. It is not OR.

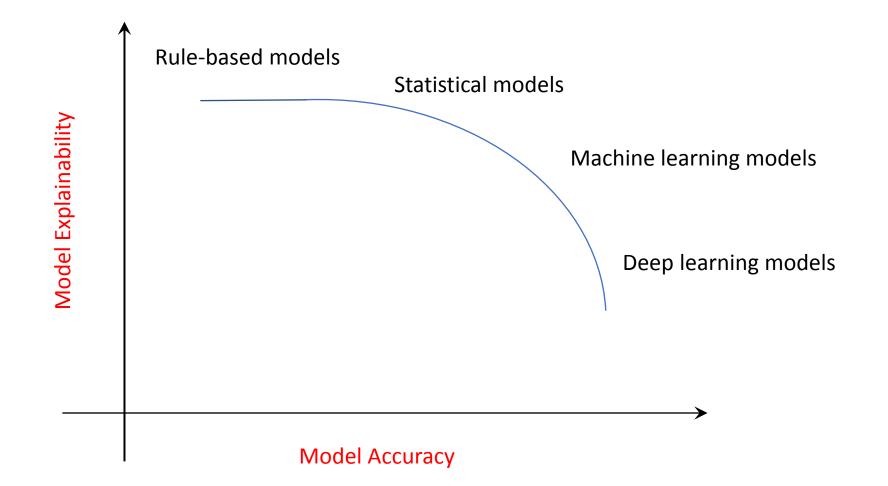
Deep Learning Computer Vision AND Surgeons Deep Learning Computer Vision AND Radiologists Deep Learning Computer Vision AND Physicians


While scientific progress in deep learning computer vision and pattern recognition has led to advanced modeling strategies with almost human-like performance, they are limited in their explainability and interpretability.

(1) What is the rationale behind AI-Powered decision making? (Explainability)(2) What is the meaning of this AI-Powered decision making? (Interpretability)



Rule-based vs. Learning-based Computer Vision



Deep and machine learning strategies vs. Traditional (rule-based) methods

Computer Vision Models; Explainability

Computer Vision Models; Explainability

- As part of computer vision model explainability, we need:
 - **Model interpretability** to ensure that the AI-Powered decision making is natural, and we can't see biasness in the prediction.
 - **Model transparency** to make sure that we are differentiating the false causality from true causality.
 - Enable real-world decision makers (domain experts) to **trust** the AI-Powered models

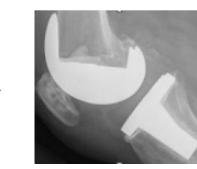
Computer Vision Models; Explainability Objectives

- The AI-Powered models explainability aims to achieve:
 - **Trust:** Convey confidence in the model to our end users.
 - **Correlations:** Capture correct correlations and associations among various features.
 - o **Identity:** Preserve privacy and identity management
 - Fairness: Be fair and ethically compliant.
 - **Reliability:** Confidence in the AI-Powered models

Explainability in Computer Vision Models; How

Example-based

Textual-based


Visual-based

What X-ray machines generate

What our practitioners want

What X-ray machines generate

What our practitioners want

Example-based

Citation: Yan, S., Ramazanian, T., Sagheb, E., Kremers, W.K., Chaudhary, V., Taunton, M., Kremers, H.M. and Tafti, AP. Give me a knee radiograph, I will tell you where the knee joint area is: a deep convolutional neural network *adventure*. arXiv preprint arXiv:2202.05382.

(a) TKA AP view left:1.00 right:1.00

(b) knee AP view 0.99 TKA AP view 1.00

(c) TKA AP view 1.00 knee AP view 0.99

Clinical Significance: Pre/Post Operative Knee Surgery

Southern Maine

(g) knee lateral view 0.97

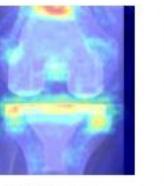
(h) TKA lateral view 0.98

(i) knee lateral view 1.00

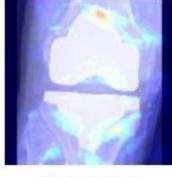
Visual-based

Citation: Yan S, Ramazanian T, Sagheb E, Fu S, Sohn S, Lewallen DG, Liu H, Kremers WK, Chaudhary V, Taunton M, Kremers HM, **Tafti AP**. *DeepTKAClassifier: Brand Classification of Total Knee Arthroplasty Implants Using Explainable Deep Convolutional Neural Networks*. In International Symposium on Visual Computing 2020 Oct 5 (pp. 154-165). Springer, Cham.

Clinical Significance: Knee revision surgery AP view:

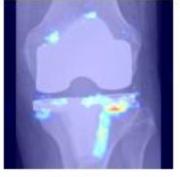


(a) Attune

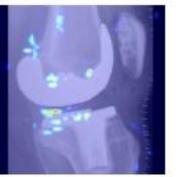


(e) Attune

(b) Sigma



(c) Triathlon



(g) Triathlon

(d) Persona

(h) Persona

Thank you!

